

Orientación del MUIE

Orientado a la especialización profesional y a la formación para el doctorado.

Perfiles de salida más destacados:

- I+D+i en empresas: ámbito industrial, bienes de consumo, uso eficiente de la energía, TIC o aplicaciones biomédicas.
- Centros de investigación especializados en ingeniería electrónica como institutos de investigación, departamentos universitarios o el CSIC.

Máster muy vinculado a la actividad investigadora y de transferencia del

Plan de estudios del MUIE (60 créditos ECTS)

Asignaturas obligatorias

18 créditos

- Diseño electrónico y control avanzado
- Sistemas analógicos avanzados
- Sistemas digitales avanzados

Asignaturas optativas (elegir 5)

30 créditos

- Prácticas externas
- Compatibilidad electromagnética y seguridad eléctrica
- Diseño microelectrónico
- Etapas electrónicas resonantes
- Control digital con FPGA de etapas electrónicas de potencia
- Diseño magnético en sistemas electrónicos
- Modelado y control de sistemas electrónicos de potencia
- Redes neuronales electrónicas
- Sistemas electrónicos para control de acceso y seguridad
- Redes de sensores electrónicos
- Tecnología electrónica biomédica
- Tratamiento de señales biomédicas

Electrónica de potencia

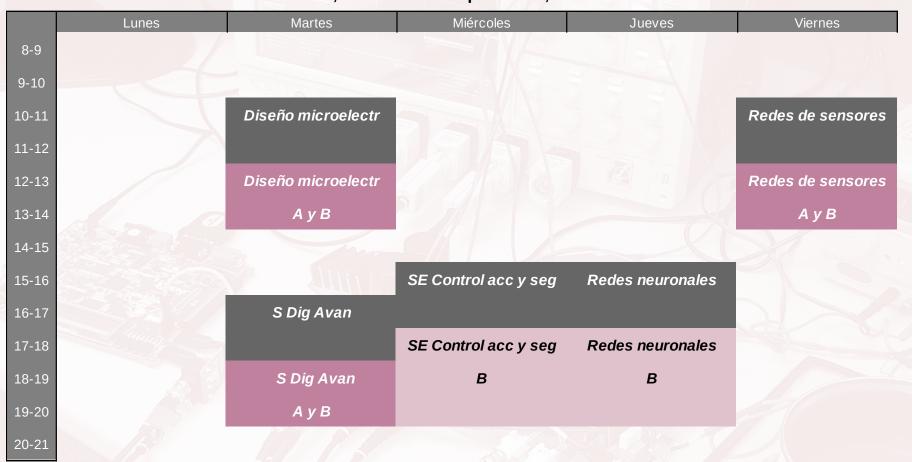
IoT e inteligencia artificial

Aplicaciones biomédicas

Trabajo Fin de Máster (TFM)

12 créditos

Horarios


MUIE, cuatrimestre de otoño, 2024/25

	Lunes	Martes	Miércoles	Jueves	Viernes
8-9	TE Biomédica	M y C SE Pot		EE Reson	CD FPGA EP
9-10	В	В	S Ana Avan	В	В
10-11			(Solo 3 sesiones)		
11-12	TE Biomédica	M y C SE Pot		EE Reson	CD FPGA EP
12-13					
13-14	5 - 10				
14-15					
15-16	TS Bio	S Ana Avan	DECA	Diseño magnético	EMC TS Bio
16-17					
17-18	man Plaining T	S Ana Avan		Diseño magnético	EMC
18-19	20 %	A y B	DECA	В	В
19-20	100		Α		
20-21	152				

Leyenda:		
DECA	Clase en aula	
DECA	Lab semana A	
EMC	Lab semana B	
S Ana Avan	Lab semanas A y B	

Horarios

MUIE, cuatrimestre de primavera, 2024/25

Leyenda:		
DECA	Clase en aula	
DECA	Lab semana A	
EMC	Lab semana B	
S Ana Avan	Lab semanas A y B	

Doble titulación Universidad de Pau - Unizar

Máster en Electrónica, Energía Eléctrica y Automatización, itinerario de Ingeniería Eléctrica e Informática Industrial de la Universidad de Pau y de los Países del Adour y Máster en Ingeniería Electrónica de Unizar.

Requisitos para estudiantes de la EINA:

- Cursar el GIEA
- Cursar en la UPPA los 60 créditos de la tabla
- El TFM se puede realizar como parte del Stage Industriel
- Recomendable nivel B2 en francés

Semestre 3 (Máster EEEA-UPPA)	Semestre 4 (Máster EEEA-UPPA)	
Traitement et transmission du signal (4 ECTS)	Stage industriel ou en Laboratoire	
Energie électrique (5 ECTS)		
Haute tension (5 ECTS)		
Hautes puissances pulsées (7 ECTS)	(30 ECTS)	
Bureau d'études et travaux pratiques (5 ECTS)		
Langue et monde de l'entreprise (4 ECTS)		

Más información en coordinamuie@unizar.es

master.unizar.es

estudios.unizar.es

MÁSTERES UNIZAR 2024-2025

Ingeniería Electrónica

Inscribete

Rama de conocimiento Ingeniería y Arquitectura

Centro

Escuela de Ingeniería y Arquitectura

Tipo de enseñanza

Presencial

Créditos: 60.00

Duración: 1 curso

Precio: 1824€

Localidad Zaragoza

Nombre del Coordinador

José Ignacio Artigas Maestre coordinamuie@unizar.es El máster va dirigido especialmente a graduados recientes en ingenierías del ámbito industrial o TIC como la Ingeniería Electrónica y Automática, Ingeniería de Tecnologías Industriales o Ingeniería de Tecnologías y Servicios de Telecomunicación. También está orientado a profesionales de empresas del sector electrónico que desean actualizar o completar sus competencias. Es un máster muy vinculado a la actividad investigadora y de transferencia del profesorado con empresas. Esto hace habitual poder realizar prácticas externas o el TFM en empresas del entorno. Tiene 12 asignaturas optativas para especializarse en internet de las cosas e inteligencia artificial, sistemas electrónicos de potencia y aplicaciones biomédicas, toda ellas áreas con gran demanda profesional actualmente.

Máster Universitario en Ingeniería Electrónica 2023-2024

Centros de impartición

Escuela de Ingeniería y Arquitectura

8

Calle María de Luna Nº 3

Zaragoza

Tel: 976761864

Coordinación: José Ignacio Artigas Maestre

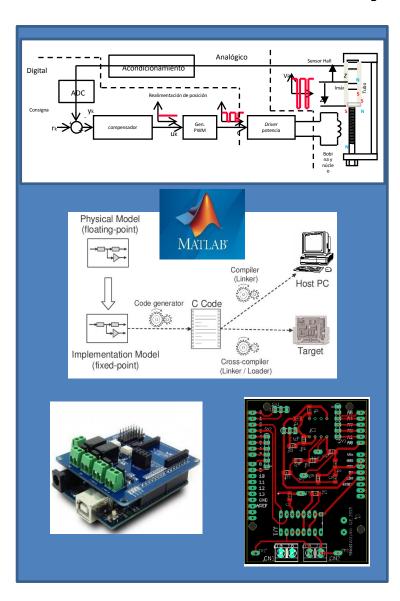
ASIGNATURAS DEL PLAN 622

Horarios &

- > Inicio
- > Acceso y admisión
- > Perfiles de salida
- > Qué se aprende
- > Plan de estudios
- > Apoyo al estudiante
- > Profesorado
- The American Control
- > Calidad
- > Encuestas y resultados
- > Información gráfica del estudio &

Impresos

> Impreso de sugerencias, quejas y reclamaciones


Normativa

- > Cómo se asegura la calidad
- Reglamento de la Organización y gestión de la calidad de los estudios de grado y máster universitario
- > Procedimientos del sistema interno de gestión de la calidad

Documentos

- Informe de Evaluación de la Calidad 2022/2023
- Informe de evaluación de años anteriores 8
- > Plan anual de innovación y mejora 2022/2023
- Plan anual de innovación y meiora de años anteriores 8
- > Informes y planes de meiora de todas las titulaciones
- > Memoria de verificación
- > Informes de renovación de la acreditación &

DISEÑO ELECTRÓNICO y CONTROL AVANZADO

TEMÁTICA:

Esta asignatura pretende formar en la implementación electrónica COMPLETA de sistemas de control AVANZADO. Para ello se tendrán en cuenta aspectos como el modelado e identificación de sistemas dinámicos, pasando por la formulación de control avanzada y los problemas de implementación y prototipado en sistemas digitales y mixtos. Todo ello con ejemplos y un trabajo que sirve como guía de toda la asignatura.

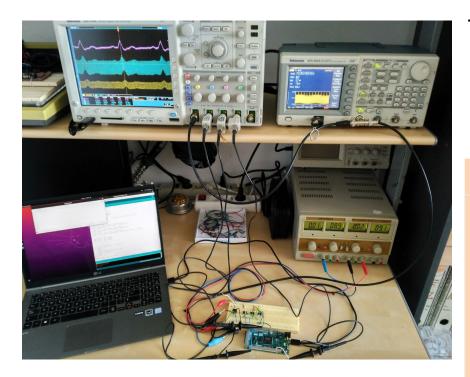
PROGRAMA:

- DISEÑO ELECTRÓNICO.
- IMPLEMENTACION ELECTRÓNICA DE UN CONTROLADOR

Restricciones de tiempo real, efectos de la latencia, efectos de cuantificación. Saturación. No-linealidad

- MODELADO E IDENTIFICACIÓN DE SISTEMAS
- CONTROL AVANZADO

PROFESORES:


Antonio Bono Nuez antoniob@unizar.es
Despacho 4.06
Electrónica

Édgar Ramírez Laboreo ramirlab@unizar.es
Despacho 0.21
Control

SISTEMAS ANALÓGICOS AVANZADOS

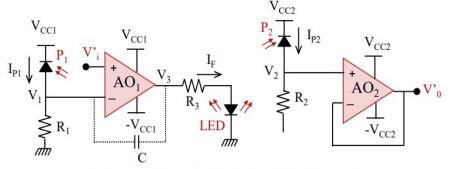


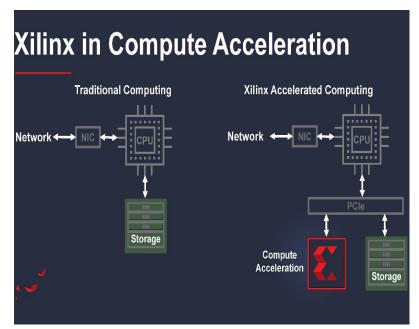
Fig. 5.- Configuración electrónica para el acoplamiento óptico.

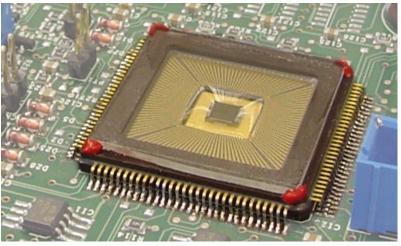
TEMÁTICA:

Diseñar circuitos analógicos avanzados con aplicación a sistemas de instrumentación y conocer el flujo de diseño para la implementación microelectrónica de circuitos integrados

PROGRAMA:

- 1. Introducción
- 2. Fabricación de circuitos integrados
- Amplificación
 - Realimentación
 - Alimentación simple
 - AO de aplicación específica
- 4. Filtros activos
- 5. Diseño de precisión y bajo ruido
- 6. Interfaz analógico-digital


PROFESORES:


Arantxa Otín aranotin@unizar.es

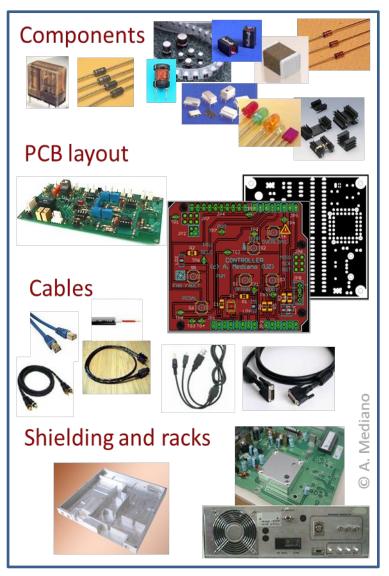
José I. Artigas <u>jiartiga@unizar.es</u>

SISTEMAS DIGITALES AVANZADOS

TEMÁTICA:

Aprender puntos clave del diseño de sistemas electrónicos digitales, mediante lenguaje VHDL, con especial énfasis en la especificación de tiempos (STA) y el test de fabricación (DFT)

PROGRAMA:


- Diseño de sistemas digitales y de entornos de validación, utilizando HDL
- Restricciones temporales y físicas en el diseño digital. Diseño asíncrono, STA y CDC
- DFT: test de la lógica digital, SCAN y JTAG
- Aritmética digital, y codificación en coma fija con HDL
- Arquitectura y bloques electrónicos disponibles en el diseño con FPGA

PROFESOR:

José Ignacio García jign@unizar.es Despacho 4.09

COMPATIBILIDAD ELECTROMAGNÉTICA Y SEGURIDAD ELÉCTRICA

TEMÁTICA:

Interferencias electromagnéticas (EMI) y compatibilidad electromagnética (EMC) en productos electrónicos (80%). Seguridad Eléctrica (20%)

PROGRAMA:

BLOQUE 1: Interferencias electromagnéticas.

BLOQUE 2: Técnicas de medida en EMC. BLOQUE 3: Técnicas de diseño en EMC.

Masas y tierras

Filtrado

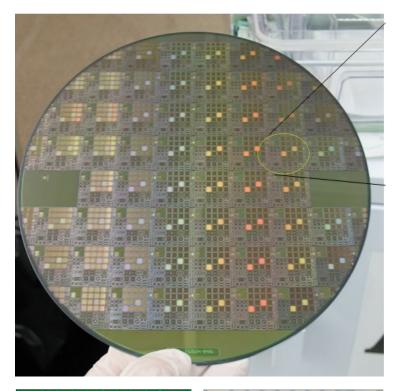
Diseño de PCBs

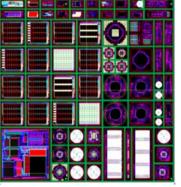
Apantallamiento de sistemas electrónicos

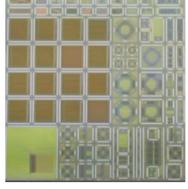
Cables y conexiones

Protección frente a transitorios

BLOQUE 4: Seguridad eléctrica


PROFESOR:




Arturo Mediano
amediano@unizar.es
Despacho D.4.18 Ada Byron

DISEÑO MICROELECTRÓNICO

Esta asignatura pretende formar al alumno en los fundamentos del diseño microelectrónico mixto analógico-digital para la implementación de circuitos integrados de aplicación específica (ASICs). EL hilo conductor de la asignatura son los convertidores AD/DA como ejemplo de diseño mixto.

EXTRACTO DEL PROGRAMA:

BLOQUE 1: Introducción

BLOQUE 2: Fabricación de circuitos integrados

Tecnologías CMOS, Flujo de diseño y herramientas CAD

BLOQUE 3: Diseño de sistemas mixtos

Simulación mixta: Verilog-A/AMS, VHDL

BLOQUE 4: Diseño microelectrónico analógico

Celdas básicas: Caracterización y modelado, layout

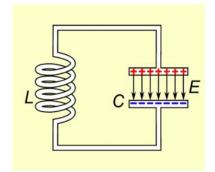
BLOQUE 5: Diseño microelectrónico digital

Flujo de diseño.

BLOQUE 6: Conversión analógico-digital: ADC y DAC

Circuitos mixtos: Big-A, Small-D

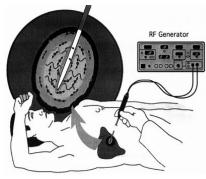
SAR


PROFESORES:

Arantxa Otín Acín aranotin@unizar.es
Despacho 4.01

Isidro Urriza Parroqué urriza@unizar.es
Despacho 4.10

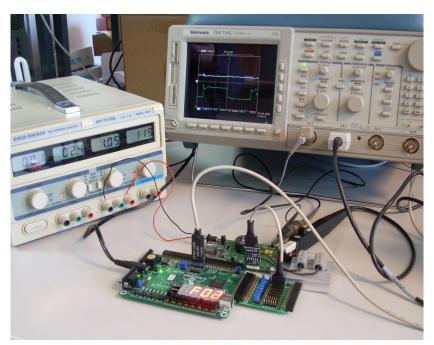
ETAPAS ELECTRÓNICAS RESONANTES


TEMÁTICA:

Sistemas electrónicos de conversión de potencia con alta eficiencia mediante técnicas resonantes, en aplicaciones industriales, domésticas y médicas

PROGRAMA:

- 1. Introducción y aplicaciones
- 2. Circuitos resonantes
- 3. Etapas resonantes puente y semipuente
- 4. Etapas resonantes de un interruptor
- 5. Modelado de etapas resonantes


PROFESORES:

Óscar Lucía olucia@unizar.es

Pablo Briz pbriz@unizar.es

CONTROL DIGITAL CON FPGA DE ETAPAS DE POTENCIA

TEMÁTICA:

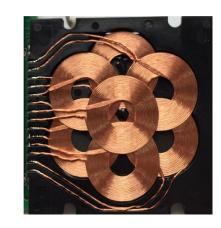
Implementación en FPGA de controladores digitales usando herramientas de síntesis de alto nivel (HLS)

PROGRAMA:

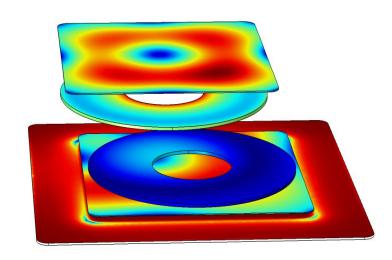
- 1. Introducción
- 2. Diseño con FPGA para etapas de potencia
- Simulación en VHDL de etapas de potencia
- 4. Generación digital de señales de disparo
- Diseño e implementación en HLS de reguladores digitales

PROFESORES:

Luis Á. Barragán barragan@unizar.es


José I. Artigas jiartiga@unizar.es

DISEÑO MAGNÉTICO EN SISTEMAS ELECTRÓNICOS


Objetivos:

- Proporcionar las bases del diseño y fabricación de elementos magnéticos para aplicaciones de electrónica de potencia
- Dar al alumno la perspectiva práctica de los conceptos científicos y técnicos involucrados

Organización:

- 6 ECTS
- La asignatura pivota sobre el diseño de una aplicación de transferencia de energía inalámbrica por elementos finitos.
- Actividades de aprendizaje: teoría (30 h), prácticas (18 h), seminarios (6 h), trabajo de la asignatura y examen tipo test
- Prof: Claudio Carretero y Jesús Acero

Información de la asignatura en Moodle: https://moodle.unizar.es/add/

MODELADO Y CONTROL DE SISTEMAS ELECTRÓNICOS DE POTENCIA

Colabora:

TEMÁTICA:

Utilizando un Automated Guided Vehicle (AGV) como proyectovector se estudiará la forma de modelar, simular y controlar los convertidores involucrados en su funcionamiento (DC/DC, AC/DC y DC/AC)

PROGRAMA:

ENSEÑANZA BASADA EN PROYECTO

- 1. ¿Qué es un AGV? Requerimientos nivel sistema almacenamiento, cargador, DC/DC, inversor...
- 2. Modelado de convertidores AGV para Simulación

Diseño control

Diseño convertidor (pérdidas)

- 3. Diseño convertidores AGV
- 4. Control convertidores AGV
 Previas en simulación
 Si es posible, prácticas con Epic Power

PROFESOR:

Estanis Oyarbide
eoyarbid@unizar.es
Despacho D4.02

Tutorías: con cita por correo

REDES NEURONALES ELECTRÓNICAS

Spotify*

TEMÁTICA:

Tecnologías para *machine learning*Enfoque ingeniería/aplicaciones:
Fundamentos de RNA / *Machine Learning*Capacidad de Aplicación de RNA / ML
Seleccionar la tecnología de implementación idónea
Programación Python (no hacen falta conocimientos previos)

PROGRAMA:

- 1. Fundamentos de RNA y machine learning
- 2. Aprendizaje no supervisado
- 3. Aprendizaje supervisado
- 4. Modelos kernel. Modelos temporales
- 5. Deep Learning
- 6. Realización electrónica analógica
- 7. Realización electrónica digital
- 8. Desarrollo de aplicaciones

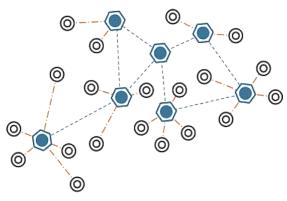
PRÁCTICAS

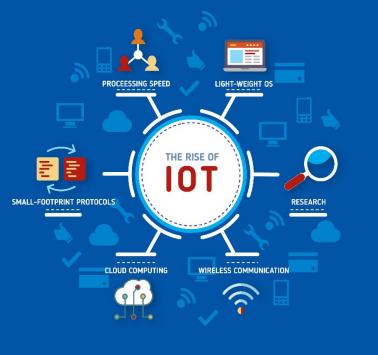
Con Python y Google TensorFlow

? python™

PROFESORES:

Bonifacio Martín del Brío bmb@unizar.es
David Buldain Pérez buldain@unizar.es





REDES DE SENSORES ELECTRÓNICOS

TEMÁTICA:

Conocer los fundamentos de las redes de sensores de aplicación en los entornos inteligentes e **Internet de las Cosas**

EXTRACTO DEL PROGRAMA:

- Programación avanzada de microcontroladores
- Sistemas operativos de tiempo real
- Programación básica en Python
- Comunicaciones inalámbricas con la nube y entre dispositivos vía WIFI, Bluetooth Low Energy, LoraWAN, ZigBee, etc.
- Implementación de algoritmos de inteligencia artificial en microcontroladores
- Diseño electrónico de muy bajo consumo

PROFESOR: Roberto Casas

rcasas@unizar.es

TECNOLOGÍA ELECTRÓNICA BIOMÉDICA

TEMÁTICA:

Instrumentación electrónica biomédica y tecnologías electroquirúrgicas aplicadas al tratamiento de cáncer

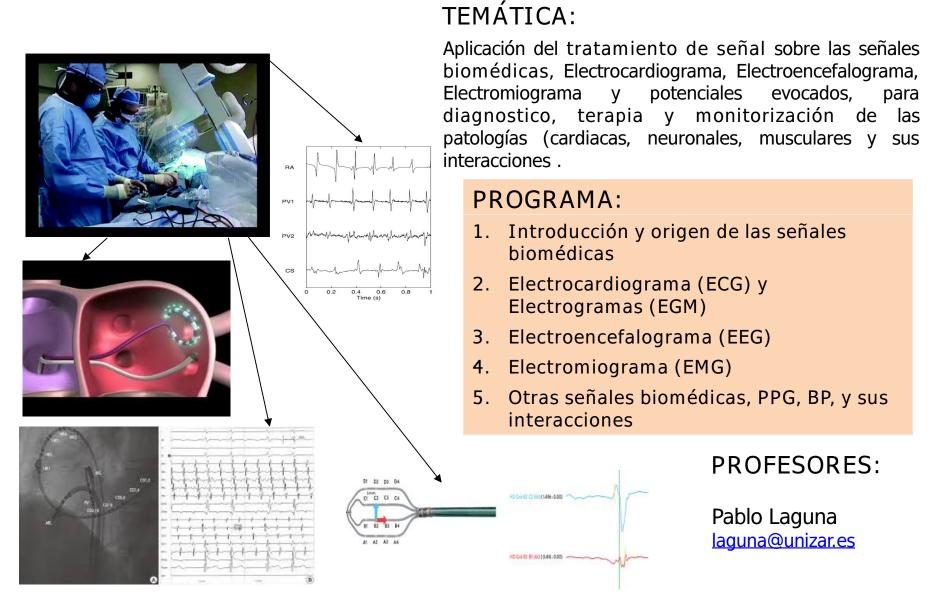
PROGRAMA:

PARTE I. Bases de instrumentación biomédica

- Electrofisiología
- Sistemas electrónicos en diagnóstico y terapia

PARTE II. Tecnologías electroquirúrgicas

- Sistemas electroquirúgicos
- Tecnologías aplicadas al tratamiento de cáncer


PROFESORES:

Óscar Lucía Jorge Falcó olucia@unizar.es ifalco@unizar.es

Borja López Pablo Briz pbriz@unizar.es

TRATAMIENTO DE SEÑALES BIOMÉDICAS

