### Curso 2011-2012

#### **CENTROS**



Planes Estudio

**PLANES** 

**ASIGNATURAS** 

v. 2.11

## Fundamentos de ciencia de materiales código:16216

Ingeniero Industrial (en extinción) Escuela de Ingeniería y Arquitectura, Zaragoza

Departamentos:

Carácter: Troncal

Idioma: Español

Tipo: Teórica Práctica

Curso: 2

Ciencia y Tecnología de Materiales y Fluidos

Ciencia de los Materiales e Ingeniería Metalúrgica

Oferta de plazas de libre elección:

Propia Titulación: Otras Titulaciones: No

y/u:

Otros Centros: No Nº Plazas optativas:

# Objetivos y Programa

Duración: 2º cuatrimestre

Profesores y Bibliografía

Horas teóricas: 4

Créditos UZ: 7,5

Créditos ECTS: 6

Horas prácticas: 15

Horario / Observaciones

#### **Objetivos**

Establecer los parámetros estructurales y microestructurales que determinan las propiedades mecánicas, eléctricas, térmicas, magnéticas y ópticas de materiales y que permiten comprender las diferencias entre los materiales metálicos, cerámicos, poliméricos y compuestos.

## Programa

- Introducción

ESTRUCTURA Y MICROESTRUCTURA

- Revisión de los tipos de enlace
- Estructuras cristalinas
- Defectos
- Difusión
- Transformaciones y diagramas de fase

PROPIEDADES

Propiedades mecánicas

Mecanismos de endurecimiento

Fractura y fatiga

Propiedades eléctricas

Propiedades térmicas Propiedades magnéticas

Propiedades ópticas

MATERIALES

Aleaciones metálicas férreas

Aleaciones metálicas no férreas

Materiales cerámicos

Materiales poliméricos

Materiales compuestos

Ejemplos de selección de materiales

# PROGRAMA DE PRÁCTICAS DE LABORATORIO:

Primera sesión:

Medida de la evolución de la resistividad con la temperatura en diferentes materiales

Determinación del coeficiente de expansión térmica de materiales

Medida de la permitividad dieléctrica y del índice de refracción en polímeros Comportamiento ferroeléctrico

Segunda sesión:

Ensayo de tracción en metales y polímeros

Dureza y resistencia de materiales metálicos. Ensayo Charpy

Simulación por ordenador en Ciencia de Materiales

Tercera sesión:

Tratamientos térmicos en aceros

Choque térmico en vidrios

Cuarta sesión:

Deformación en frío y recocido en metales

Tratamientos térmicos de precipitación.

## Evaluación

La evaluación se divide en dos partes: La parte de teoría y problemas se evaluará con un examen en el que la parte de teoría supondrá un 60% de la nota final y la de problemas un 40%. Por su parte la nota de prácticas se obtendrá a partir del cuaderno de laboratorio y un examen de seis preguntas en el que habrá que obtener cuatro correctas. La nota final de la asignatura se obtendrá de la siguiente manera: 0.8\* nota de teoría-prácticas + 0.2\* nota de prácticas.

1 de 1 23/01/2012 13:56